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ABSTRACT

Extracting the geometric characteristics of conic sections, such as their center, axes and
foci, from their defining equations is required for various applications in computer graph-
ics and geometric modeling. Although there exist standard techniques for computing the
geometric characteristics for conics in implicit form, in shape modeling applications conic
sections are often represented by rational quadratic parameterizations. Here we present
closed formulas for computing the geometric characteristics of conics directly from their
quadratic parameterizations without resorting to implicitization procedures. Our ap-
proach uses the invariants of rational quadratic parameterizations under rational linear
reparameterizations. These invariants are also used to give a complete characterization
of degenerate conics represented by rational quadratic parameterizations.

Keywords: Conic section; invariant; quadratic parameterization.

1. Introduction

Conic sections have many applications in computer graphics and computer aided
design. In some applications it may be necessary to extract their geometric charac-
teristics, such as their center, axes, and foci, from their defining equations. When
conics are given in implicit form, it is well known how to compute these geomet-
ric characteristics, e.g. Ref. [4]. However, conic sections are frequently represented
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162 R. Goldman & W. Wang

as rational quadratic parametric curves. It is therefore of practical importance to
study how to compute their geometric characteristics directly from parametric rep-
resentations, without first converting the conics into implicit form.

In Ref. [2], algorithms are derived for computing the center, foci, and axes of a
conic represented in rational Bézier form. Lee’s approach in Ref. [2] is highly geo-
metric. Another geometric approach to determining the geometric characteristics of
a conic section from its rational quadratic parameterization is presented by Albrecht
in Ref. {1]. Albrecht’s solution is based on some sophisticated results about conic
sections from classical projective geometry. Both Lee and Albrecht take an algorith-
mic approach; neither provides simple closed form expressions for all the geometric
characteristics of a conic section. In contrast, here we take an elementary algebraic
approach, deriving our formulas from the invariants of rational quadratic parame-
terizations under rational linear reparameterizations. Our technique is conceptually
straightforward and leads to simple explicit formulas for all the geometric charac-
teristics of any conic section. These explicit formulas are presented in Theorems 1,
2 and 3. We also use invariants to give a complete characterization of degenerate
conics (see Section 6). Therefore, our solution handles all rational quadratic param-
eterizations, including those giving rise to degenerate conics. Finally, our algebraic
approach has the potential to extend to rational quadratic parameterizations of
quadric surfaces, a topic we hope to address in a future paper.

2. Invariants and Classification

The geometric characteristics of a conic are independent of any particular param-
eterization of the conic. Since our goal is to express these characteristics in terms
of (numerical) coefficients of a rational quadratic parameterization, it is natural to
seek invariants of such a parameterization under rational linear reparameterization.

With homogeneous coordinates a conic section in the Euclidean plane is repre-
sented parametrically by

P(u,v) = u?E + 2uvF + v2G, (1)

where E = (ez,ey,ew), F = (fz, fy, fu)y G = (92, 9y, gw) and (u,v) are homoge-
neous parameters. We can rewrite this equation in matrix form

P(115) = (90 9), 00,0, 0)) = (1) (N, N0 ) (4.

_ (€= fz _ (& fy) =(ew fw)
Ne (fm gm) ’ Ny (fy Gy > Vo Sfw 9w

are called the coefficient matrices of P(u,v). Throughout this paper all coefficients
are assumed to be real numbers.

Let P(u,v) and R(s,t) be two arbitrary rational quadratic parameterizations
of the same conic. Denote the inverse of P(u,v) by p(u,v) = P~}(z,y,w), where

where
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(z,y,w) is a point on the conic. Then the reparameterization between P(u,v) and
R(s,t) is given by p(u,v) = P~1(z,y,w) = P~ o R(s,t). Clearly, P"1o R is a
birational mapping from the real line into itself, thus is a projective transformation,
i.e. a rational linear function (see Ref. [5]).

Let a general rational linear reparameterization be given by

(u,v) = (i, 7) (g Z) = (i, 7)Q, with det(Q) # 0. (2)
Through this reparameterization we get another parameterization of the same conic,
P(&5) = Plu(@,),o(5, 1) = (1) (QN.07.QN,Q7.QN.Q") 5 ).

Denote the coefficient matrices of P(@,%) by N, = QN,QT, N, = QN,Q7, and
N w = QN wQT-

The invariants of P(u,v) under the reparameterization (2) are, in fact, the in-
variants of the system of three quadratic binary forms determined by P(u,v) under
the linear projective transformations of the variables given by (2) (see Ref. [3]).
To investigate these invariants, we shall need the notion of the adjoint of a 2 x 2
matrix. The adjoint of the matrix

ab
v=(2a)

W*:(d ”b).
—C a

Notice that WW* = det(W)I, where [ is the identity matrix.

is defined by

Lemma 1.

(a) det(N,) = det*(Q) det(N,) for any o € {z,y,w}; o

() If Ng is nonsingular, det(NoNg') = det(NaNg?') and tr(N N5') =
tr(NaNg?') for any o, 8 € {z,y,w};

(c) tr(NaNg) = detz(Q)tr(NaNg) for any o, B € {z,y, w}.

Proof. (a) This result follows from N, = QN,QT.
(b) This result follows because

Naﬁﬁ—l — QNQQT(QT)_INEIQ_I — QNaNﬁ_lQ—ly

so N, N, 5 ! and N,N 5 ! have the same characteristic polynomial.

(¢) Let
J= ((1) “01)
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It is easy to verify that M* = —JMTJ and JJ = —I. So for any two 2 x 2 matrices
A and B,

(AB)* = —J(AB)TJ = —JBTATJ = (-JBTJ)(-JATJ) = B*A*.
Since det(Q) # 0,
NaNj = QNaQ(QNsQT)" = QN.QT(QT)*N3Q*
= det*(Q)QNaN3Q*/ det(Q) = det*(Q)QN.N3Q*.
Hence, tr(NaN[;) = det? (Q)tr(NadN3). m]

By Lemma 1, det(Na) and tr(NoNj) are invariants of weight 2, whereas
det(NaNg 1) and tr(N, Ng 1) are invariants of weight 0, for o, 8 € {z,y,w} (see
Ref. [3]). The geometric characteristics of a conic remain the same under a rational
linear reparameterization, so they are also invariants. We are going to represent
these geometric characteristics in terms of the invariants listed in Lemma 1.

There are three classes of non-degenerate conic sections: ellipses, parabolas, and
hyperbolas. A conic in each class can be mapped affinely into any other member
in the same class, but two conics in different classes cannot be mapped affinely
into each other. A conic is an ellipse, parabola, or hyperbola if it intersects the
line at infinity in no real point, a double real point, or two distinct real points,
respectively. The number of real intersection points between a conic P(u,v) in (1)
and the line at infinity is determined by the number of real zeros of p., (u, v), since
each real zero of p,,(u,v) gives rise to a real point at infinity on the conic. Thus a
conic can be classified by checking the sign of the discriminant of py,(u,v), which
is 42 — 4e,, gy = —4 det(N,,). Hence, we obtain

Lemma 2. A proper conic P(u,v) in (1) is an ellipse, parabola, or hyperbola if
det(Ny) > 0, det(Ny) =0, or det(N,,) < 0, respectively.

Note that since det(/V,,) = det?(Q) det(N,), the sign of det(N,,) is invariant
under rational linear reparameterization.

3. Ellipses

By Lemma 2, an ellipse is signaled by det(N,) > 0. Let P(u,v) in (1) be an
arbitrary parameterization of the ellipse with center at C' = (eg,¢y), semi-major
axis vector A = (az,ay), and semi-minor axis vector B = (b;,b,) — see Figure 1.

Clearly, another parameterization of this ellipse is
_ 1-—
Pt A B+ C,
() = 1+1t2 + 1+ t2 +

since the ellipse can be generated by an affine transformation of the unit circle

2
=06) = (T3 137
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- With homogeneous parameters (i, ), where 4/0 = t, the corresponding homoge-
neous parameterization P(&,?) = (pz (&, D), by (i, D), Pu (i, 7)) is given by

Pz (@l,0) = (8?2 — @®)ag + 2idb, + (32 + 42)c,

= #2(cy — ag) + 2iiiby + 72 (co + az) = (@, 3) N, (“) ,

where

c _[(cz—az by o _[cy—ay by = (10
Nx—( by cw“‘az), Ny_( by cy"'ay), Mo = <01>'

The invariants expressed in the coefficients of P(i, 7)) are defined by the unknown
vectors A, B, C, which in turn determine the sought after geometric characteristics.
On the other hand, given an arbitrary quadratic parameterization P(u,v) of the
same conic as in (1), the invariants of P(u,v) are expressions in the known coef-
ficients of P(u,v). By construction, these two sets of invariants are related. From
these relations we will be able to solve for the geometric characteristics of the given
conic in terms of the known coeflicients of P(u,v).

First, we solve for the unknown C in terms of the entries of Ny, Ny, and N,,.
Consider

g =1 [ Cz — 0Og b:r
R ]

Cx + ag

Y
3.0+
B
+ -
3
c b
B i i i
L 1] T T
-3.0 \J 3.0

Fig. 1. The ellipse in Example 1. The center is marked by a bullet, and the foci by two crosses.
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By Lemma 1(b),
tr(No Nyt = tr(No N 1) = 2¢;.
Hence,
¢z = tr(No N1 /2 = %tr(NzN;‘,)/ det(Ny).
Similarly,
ey = tr(NyN ;1) /2 = %tr(NyN:,)/ det(Ny).
To solve for the remaining unknowns A and B, consider
det(N,N;1) = ¢ — a2 — b2.
By Lemma 1(b)
a2 4+ b2 = c2 — det(N, N ') = ¢ — det(N, N 1)
Thus
az +b2 =z,
where v, = cZ — det(N,N_1). Similarly,
ay + b =,

where vy = ¢2 — det(NyN51).
By Lemma 1(a), det(NN,,) = det*(Q) det(N,,). Since det(N,,) =1,

det*(Q) = det(N,,)/ det(Ny,) = 1/ det(Ny).
On the other hand, from
N N* = cz—az b cy+ay —by ’
Y b cptay —by cy—ay

by Lemma 1(c) and (5), we obtain

)

2(czey — agay — byby) = tr(NzN;) = detZ(Q)tr(NxN;) = tr(N:Ny)/ det(Ny).

Thus
Az0y + bgby = Ty,
where

Toy = CgCy — %tr(NINJ)/det(Nw).

(6)



Geometric Characteristics of Conic Sections 167

By (a) and (c) of Lemma 1, tr(N;Ny)/ det(Ny) = tr(NwN;)/ det(N,,) holds for
any reparameterization Q. Hence, tr(N;N;)/ det(Ny) = tr(N N 1)/ det(N, Ny )
is an invariant, assuming N, is invertible.

To solve equations (3), (4), and (6), let ¢; = |A| and ¢3 = |B|. In addition, let
0 denote the angle between the semi-major axis vector A and the z-axis, where
0 € (—m/2,7/2], so that (£1,0) are the polar coordinates of A. Then a; = ¢; cos¥,
ay = {1sinf, by = £y cos(d + 7/2) = —Lysinb, and by = £ysin(f + 7/2) = £3 cosé.
Substituting these values into equations (3), (4), and (6), we obtain

22 cos® 0 + £3sin? 0 = ,, (7)
£2sin? @ + L2 cos? O = ,, (8)
£3sinfcosf — £3sin 6 cosf = Tyy. 9)

We are now going to solve equations (7), (8) and (9). Subtracting (8) from (7) yields

(2 — £2)cos20 = vz — Yy- (10)
Moreover, it follows from (9) that
(€2 — £2)sin 260 = 27, (11)

When ¢; = {5, the ellipse is a circle, and the angle 8 is undefined. Suppose
however that £; > 3 > 0. Squaring and adding equations (10) and (11) leads to

B — =[Ot — 1)+ 472, = b, (12)
Adding (7) to (8) yields

Finally, adding and subtracting (13) and (12) yields

1 1
fh=3 [% + + \/(vz —w)?+ 473yj = 5%+ + day)

and

1 1
6= 5 ['Yz +vy — \/('ym ~1)? +4T3y] = 501 + 9y = 0zy)-

Since by equation (12)
03 — 03 = 6y,
it follows by equations (10) and (11) that

cos 20 = HER and sin26 =

61‘y 693?/

2Tzy

By (10) and (11), the ellipse is a circle if and only if v, — vy = 7Tyy = 0. In this
case, it follows from equations (7) and (8) that the radius of the circle is given by

r=01 =\ = [¢} — det(N;)/ det(Ny,)]*/?
= /7y = [c2 — det(NN,)/ det(N,,)]*/2.
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The above results are summarized in the theorem below.

Theorem 1. Let £ denote an ellipse given by P(u,v) in (1), i.e. det(Ny,) > 0.
(a) The center C = (cz, cy) of € is given by

e = ptr(N.N)/ det(No),
¢y = %tr(NyN;‘,) / det(No)-

() If £ is not a circle, the semi-major azis vector A = (az,ay) and semi-minor
azis vector B = (b, by) of € are given by
a; = £1cosb,
ay =/{;sinb,
bz = —Zg sin 9,

b, = {3cosb,

where
b= %[vm +y + 6y ]V?,
R e
c0820 = (yz — vy)/0zy and sin26 = 27, /04,.
Here

Yo = ¢ — det(N;)/ det(Nu),
Yy z—det(N )/ det(Ny),

Tey = CzCy — Etr(NzN;)/det(Nw),
6zy = \/(73: — ’yy)z =+ 47'22:y.

(c) The eccentricity of € is

=4/1 —€2/£2
Yz +'Yy+5a:y

and the foci of € are at
(cz,cy) £ eag,ay).

(d) € is a circle if and only if 6,y = 0, or equivalently, Yz — vy = Tzy = 0. When
& is a circle, its radius is

T= Yz =Ty
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If vz = vy =0, then r =0 and € collapses to a single point (cz,cy).

Remark: Once cos 26 and sin 26 are known, one may find cosé and sin 6, where
0 € (—m/2,m/2], by the half angle formulas:

cos@ = /(1 + cos20)/2,

. (1 —cos26)/2 if sin26 >0;
sinf = o s
—+/(1 —cos28)/2 if sin26 <0.

Example 1. Consider the rational quadratic curve
P(t) = (pz(t), py(t), pw(t)) = (—t2+3t, —2t+2, t2 —t+1),

which is shown in Figure 1. Here
[ -13/2 [0 -1 (1 -1/2\.
= (o) w=(53) m= (L)

det(N;) = —9/4, det(Ny) = -1, det(Ny,) =3/4,
tr(NzNy,) = 1/2, tr(NyNy) =1, tr(N:Ny) = 1.

Since det(N,) = 3/4 > 0, by Lemma 2 the curve is an ellipse. The center of this
ellipse is at

C = (care,) = (%tr(Nfoj,)/det(Nw), %tr(NyN:])/det(Nw)) — (1/3,2/3).

therefore

Moreover,
vz = ¢2 — det(N,)/ det(N,,) = 28/9,
vy = ¢ — det(Ny)/ det(N,,) = 16/9,
Tey = CaCy — %tr(NmN;) / det(Nw) = —4/9,
Oy = \ﬂ% —7y)? + 472, = 4V13/9.
Thus

b = %[22 +V52]"/% & 1.801577, £y = %[22 — V/52]1/2 5 1.281878 .

To find 6, we first have
3

0520 = (Vo — Vy)/bzy = \/ﬁ’

2
sin26 = 2sz/5zy = _ﬁ
Hence,

cos 0 = 0.957092, sin§ ~ —0.289784
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So the semi-major axis vector is

A = (az,ay) = (€1 cosb, {¢;sind) = (1.724275, —0.522068),
and the semi-minor axis vector is

B = (bz, by) = (—{€2sinf, #3cosf) = (0.371468, 1.226875).

The eccentricity is

e =1/1—£2/62 =0.702655

and the two foci are located at (1.544903, 0.299833) and (—0.878236, 1.033500).

4. Hyperbolas

By Lemma 2, a hyperbola is signaled by det(/Ny,) < 0. Let P(u,v) in (1) be an
arbitrary parameterization of the hyperbola with center at C' = (cg,¢y), semi-
major axis vector A = (az, ay), and semi-minor axis vector B = (b, by) (see Figure
2). Another parameterization of the hyperbola is

1+¢2 2t

P(t) = [ A+ =B +C.

By the same derivation that we used for the ellipse, we can also obtain the following
formulas for the features of the hyperbola. The details of this derivation are omitted,
since they are much the same as the details for the ellipse.

Theorem 2. Let H denote a hyperbola given by P(u,v) in (1), i.e. det(Ny) < 0.

Fig. 2. The hyperbola in Example 2. The center is marked by a bullet, and the foci by two crosses.
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(a) The center C = (cz,cy) of H is given by
e = %tr(Nszj,)/det(Nw),

1
cy = §tr(NyN1:)/det(Nw).
(b) The semi-magor axis vector A = (az,ay) and semi-minor aris vector B =
(bz, by) of H are given by
ay = 1 cosé,

ay = £1sind,

by = —l;sinb,
by = £3 cosd,
where
1
f = ﬁh’z + vy + 6my]1/27 (14)
1
==+ w) + 8ay)'2, (15)
c0s20 = (Yz — Vy)/0sy and sin20 = 27,y /6zy. (16)
Here

Yz = c2 — det(N,)/ det(Ny),

x

Yy = cg — det(Ny)/ det(Ny),
Try = CzCy — %tr(NzN;)/ det(Ny),

Ozy = \/(’Yz — W) + 472,
(c) The eccentricity of H is
20,
e=1/1+42/02 = PRI +’Yy:61y’
and the foci of H are at
(cz,cy) £ eag,ay).

(d) The two asymptotes of H pass through the center (cg,cy) and have direction

vectors

Dyo=A+B=(f1cos8FLlysinb, £ysinf & £; cosh).

Remark: It will be shown in Section 6 (Theorem 7) that d,, # 0 for a proper
hyperbola. Thus the expressions for sin26 and cos26 in equation (16) are always
well-defined for a proper hyperbola.

Example 2. Consider the rational quadratic curve
P(t) = (p(t), py(t), pu(t)) =(-t+2, t+1, —t2+t+1),
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which is shown in Figure 2. Here
(0 -1/2 (0 1/2 [ -11/2\.
Nz°<—1/2 2 )’Ny—<1/21)’N‘”"<1/21>’

det(N,) = —1/4, det(N,) = —1/4, det(Ny) = —5/4,
tr(NaN2) = =3/2, tr(N,N2) = —3/2, tr(N.N7) = 1/2.

Since det(N,) = —5/4 < 0, by Lemma 2 the curve is a hyperbola. The center of
this hyperbola is at

therefore

C = (cnrey) = (%tr(NxN;)/det(Nw), %tr(NyN;‘,)/det(Nw)> — (3/5,3/5).

Moreover,
Yz = c2 — det(N;)/ det(N,,) = 4/25,
Yy = 032/ — det(N,)/ det(N,,) = 4/25,
Tzy = CgCy — %tr(NmN;)/ det(Ny) = 14/25,
Say = \/ (Ve = W)2 + 472, = 28/25.
Thus
3v2 V10
b= h=7%

To find 0, we first have

0820 = (12 — %) /b2y = 0,
Sin20 = 273y /0gy =1 .

Hence,

ol

cosf = 72, sinf =
The two symmetry axis vectors are
A = (ag,ay) = (41 cosf, ¢1sind) = (0.6, 0.6),
B = (bg,by) = (—f2sinf, ¢ycosf) ~ (—0.447214, 0.447214).
The directions of the two asymptotes are
D, = A+ B =~ (0.152786, 1.047214),
D; = A— B = (1.047214, 0.152786).

The eccentricity is

14
e=/1+£2/03 = % ~ 1.247219

and the two foci are located at (1.348331, 1.348331) and (—0.148331, —0.148331).
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5. Parabolas

By Lemma 2, a parabola is signaled by det(N,) = 0. Any parabola can be
mapped by a Euclidean transformation into a standard parabola y? = 4kz, whose
focus is at (k,0), for some k > 0 (see Ref. [4]). Let A = v/k. Then one parameteri-
zation of the parabola y? = 4kz is

R(t) = (1,0)t2 + 2X(0, 1)¢.

Let P(u,v) in (1) be an arbitrary parameterization of a parabola P with the
direction vector of its symmetry axis D = (d;,dy), where ||D|| = 1, and vertex
V = (v, vy) — see Figure 3. Then, by the preceding discussion, a standard param-
eterization of P is

P(t) = Dt® + 2\Ht + V,
where H = (hg, hy) = (—dy,d;). The corresponding homogeneous form is

P(a,%) = Da? + 2AHud + V2,

o | dz Ahg o dy Ahy < (00
S () e () = (01)
Our goal is to solve for (d;,dy,0), (hs, hy,0), (Vz,vy,1), and & in terms of the
entries of Ny, Ny, N,,. Consider

F e — ((de Mha) (10) _(ds 0
=W =\ Mhy v J\00) T \ AR 0)

dy = tr(N.N}) = det?(Q)tr(N.N7).

so here

By Lemma 1(¢),

3.0+

Fig. 3. The parabola in Example 3. The vertex is marked by a bullet, and the focus by a cross.
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Similarly
dy = det?(Q)tr(N, NX).
Since d2 + dz =1,

1 1

Q) = LN T RN = I -

where L = [tr?(N,N2) + tr?(N,Nz)]/2. Thus
D = (ds,dy) = (tr(NzNy)/L, tr(NyNy)/L),

and
H = (hs, hy) = (=tr(NyNy,)/L, tr(NeNy,)/L).
By Lemma 1(a) and equation (17),
dzvz — h2A? = det(N,) = det?(Q) det(N,) = det(N,)/L. (18)
Similarly,
dyvy — 2% = det(Ny)/L. (19)
Furthermore, by Lemma 1(c¢) and equation (17),
devy + dyvz — 2hahyA? = tr(N,N}) = det®(Q)tr(NoNy) = tr(N-N;)/L.  (20)

Let ¢ = d; = hy and s = dy = —h,. Then the three equations (18), (19), and
(20) for A, v, and vy can be rewritten as

cvgy — s20% = Yo (21)
svy — A% =, (22)
sUz + cuy + 2esA\? = Toy) (23)

where
Yz = det(Nz)/L, vy = det(Ny)/L, 7oy =tr(N:N;)/L.

Now we are going to solve equations (21), (22) and (23) for A, vz, and vy. Multiplying
both sides of (23) by cs yields

cs?vy + c2suy + 2c25%0% = cs7yy, (24)
Substituting cv; = v; + s2A? and svy = 7, + c2A? into (24), we obtain
esTry = 82 (Y2 + 82A%) + (7 + 2A?) 4+ 2625202 = 5%y, + Py + A,
since ¢? + s? = d2 + d2 = 1. Hence,
k=X = csTyy — 2y, — Py

From (21) and (22) it follows that

1
Ur = Z[’Yz + 8%(csTay — 8%y — )] = 37uy + (1 + %)y, — csy,
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1
Uy = ;['Yy + P (csTay — 8772 — Cz')’y)] = C*Tay — oz +s(1 + cz)’)’y'

Furthermore, according to the discussion at the beginning of this section, the focus
(rz,ry) of P is V + kD. Hence,

Te = Vg + kdy = 8374y + (1 + 8%)y, — es%yy + c(csTay — 827z — )
= 8Tay + (Yo — W)-
Similarly,
Ty =y + kdy = cTay — 5(Yz — Vy)-
These results are summarized in the following theorem.

Theorem 3. Let P denote a parabola given by P(u,v) in (1), i.e. det(N,) =0.
(a) The symmetry azis of P has the unit direction vector D = (c,s), where
c=tr(N;N2)/L, s = tr(NyN2)/L, and L = [tr?(N,N2*) + tr2(N,Nx)]1/2.
(b) The vertex V = (vgz,vy) of P is given by

Uy = 53Txy +c(l+ 32)% — csz'yy,
vy = oy — 57 + (1 + )y,
where
Yz = det(Ny)/L, vy =det(Ny)/L, Tzy =tr(NoNy)/L.
(c) The focus (rg,7y) of P is given by
Tz = 8Tay + (Vo — W),
Ty = CTay — $(Yz — Vy)-
(d) The focal length k of P is given by
k = csTpy — 8295 — 2y,

Remark: We shall see in Section 6 (Lemma 7) that for a proper parabola L # 0
always holds. Thus for a proper parabola the expressions for ¢, s, vz, vy, and 7y
in Theorem 3 are always well-defined.

Example 3. Consider the quadratic polynomial curve
P(t) = (p=(t), py(t), pu(t)) = (=3¢ +6t -2, 2> ~2¢, 1),
which is shown in Figure 3. Here
ne= (30 5) me (B0) e (01)
det(N;) = -3, det(N,) = —1, det(N,) =0,
tr(NNj,) = =3, tr(NyNy) =2, tr(N.N;) =2.
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Since det(NN,,) =0, by Lemma 2 the curve is a parabola. Now
L = [tr®(N,N}) + tr? (N, N3)]V? = V13.
3 2
V13’ Vi3’
7o = det(Ny)/L = =3/V/13, =, = det(N,)/L = —1/V/T3,
Toy = tr(NzNy)/L = 2//13.
Thus the direction of the symmetry axis vector is

D = (c,s) = (-3/v13,2/V13),

c=tr(NyN})/L=— s =tr(NyN})/L =

and

H = (—s,¢) = (-2/v/13,-3/V13).
Moreover, the vertex is located at

(vz,vy) = (0.928994, —0.260355),
and the focus is at

(rz,ry) ~ (0.769231, —0.153846).

6. Degenerate Cases

When the conic P(u,v) given in (1) is degenerate, the computations in Theorems 1-3
for extracting the geometric characteristics of a conic section break down. Therefore
it is vital to detect any degeneracy in P(u,v). Both the detection as well as a
complete characterization of these degenerate cases are discussed in this section.

A conic in the form of Equation (1) can become degenerate in one of three ways:

(1) The three components pz(u, v), py(u, v), pw(u,v) of P(u,v) have exactly one
common linear factor. In this case, P(u,v) is a rational linear curve, i.e. P(u,v)
represents a line. One example of such a curve is

Py, v) = u{u ~v)

Py(u,v) = u(u +v)

Dw(u,v) = 2uv,
which represents the line z —y + w = 0.

(2) The three components py(u,v), py(u,v) and py,(u,v) of P(u,v) share a
common factor of degree two — that is, p;(u,v), py(u,v) and p,(u,v) are scalar
multiples of each other. In this case, P(u,v) is a rational curve of degree zero, i.e.
P(u,v) represents a single point. One example of such a curve is

Pz (u,v) = 2u(u — v)
Py, v) = 2u(u —v)

Pw(u,v) = u(u —v),
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which represents the point with homogeneous coordinates (2,2, 1).

(3) P(u,v) is not a faithful parameterization — that is, P(u,v) is 2-to-1 almost
everywhere; such a parameterization P(u,v) is also said to be unfaithful. An exam-
ple is

pz(u,v) = u?

py(u,v) = v?

Dw(u,v) = u? + 02,

which represents the line z + y — w = 0. We assume that the three components of
an unfaithful parameterization P{u,v) in the form of Equation (1) do not have a
common factor; for if they do, by the preceding discussion, P(u,v) would represent
either a line (a 1-to-1 mapping after the common factor is removed) or a single
point (an co-to-1 mapping).

To study these degenerate cases, we introduce the matrix

er €y €y
M= 2fz ny wa
9z Gy Guw
Notice that
P(u,v) = (u?,uv,v?) M. (25)

Theorem 4. A rational quadratic parameterization P(u,v) in the form of Equation
(1) is degenerate if and only if det(M) = 0. A degenerate parameterization P(u,v)
represents either a line or a single point. Moreover, P(u,v) represents a line if
and only if rank(M) = 2, and P(u,v) represents a single point if and only if
rank(M) =1.

Proof. Suppose that P(u,v) is degenerate. According to the preceding discus-
sion, P(u,v) represents either a line or a single point. Therefore there exists a linear
equation az + by + cw = 0 that is satisfied by all the points on P(u,v), i.e.

apz(u, v) + bpy(u,v) + cpy(u,v) =0,
where a, b, and c are not all zero. Therefore
(u?, uv,v)M(a,b,c)T =0

for all (u,v). It follows that M(a,b,c)? = 0. Hence, det(M) = 0.
Conversely, suppose that det(M) = 0. Then there exist (a,b,c) # 0 such that
M(a,b,¢c)T = 0. Therefore

(u?, v, v?)M (a,b,c)T =0

for all (u, v). Thus ap, (u, v) +bp, (u, v) +cpy(u,v) = 0. That is, P(u,v) is contained
in the line az + by + cw = 0. Hence, P(u,v) is degenerate.
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From the three cases of degeneracy listed at the beginning of this section, we
see that a degenerate parameterization P(u,v) represents either a line or a single
point. Clearly, rank(M)} = 1 if and only if the three components of P(u,v) are
scalar multiples of each other, i.e. if and only if P(u,v) represents a single point.

Thus rank(M) = 2 if and only if P(u,v) represents a line — that is, if and only if
P(u,v) is either an unfaithful parameterization or the three components of P(u,v)
have exactly one common linear factor. D

Remark: The rank of M is invariant under reparameterization. Indeed, under
reparameterization (2),

(u?,uv,v?) = (@2, 4, 7%)R,

where
a® ay 7
R =1 2af8 ad + By 2v4
p* ps &

It is easy to verify that det(R) = det®(Q) % 0. Since
P(u,v) = (u?,uv,v® )M = (4%, 49, 7*)RM = (a2, b, 9°)M = P(i, ),

we have M = RM. Hence, rank(M) is invariant under reparameterization.

Theorem 4 provides a way to detect if a rational quadratic parameterization
is degenerate. Only in the case where det(M) # 0, should one continue to apply
Theorem 1, 2, or 3 to analyze P(u,v).

By Theorem 4, a degenerate parameterization represents a single point if and
only if the three components of P(u,v) have a common factor of degree two. How-
ever, a degenerate parameterization representing a line can occur in one of two
ways: either the three components of P(u,v) have exactly one common linear fac-
tor or P(u,v) is unfaithful. Most of the remainder of this section is devoted to
distinguishing these two cases for the three types of conic sections.

By Liiroth’s Theorem (see Ref. [5]), an unfaithful parameterization P(u,v) of a
rational curve C can be made into a lower degree faithful parameterization P(s, t)
through a reparameterization. In particular, we have the follow lemma about an
unfaithful rational quadratic parameterization.

Lemma 3. Let P(u,v) be in the form of Equation (1). P(u,v) is unfaithful if and
only if P(u,v) represents a line and the three components of P(u,v) do not share a
common factor. Moreover, if P(u,v) is unfaithful, then P(u,v) can be made faithful
by a rational quadratic reparameterization.

Proof. Suppose P(u,v) is 2-to-1 almost everywhere. Then the three compo-
nents of P(u,v) do not share a common factor. Furthermore, there are two different
pairs of parameter values Uy = (ug,vo) and U; = (uy,v;1), where ug : vo # ug : v1,
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that give rise to the same point on P(u,v) — that is, P(ug,vo) = pP(ui,v1) for
some constant p. Using Equation (25), we obtain
[Vo — pV1]M =0,

where Vo = (u,uovo,v3) and Vi = (u?,uyvy,v?). Clearly, Vo — pVi # 0, since
ug : Uo # up : v1. It follows that det(M) = 0, i.e. rank(M) < 3. On the other hand,
since the three components of P(u,v) are not scalar multiples of each other, we have
rank(M) > 1. Therefore rank(M) = 2. Hence by Theorem 4, P(u,v) represents a
line.

Conversely, suppose that P(u,v) represents the line ax + by + cw = 0, i.e.
apz(u,v) + bpy(u,v) + cpw(u,v) = 0, and the three components of P(u,v) do not
share a common factor. Without loss of generality, assume that a # 0. Then

pa(u,) = =2y 0,0) ~ Zpu(u0). (26)

Thus, under the reparameterization s = s(u,v) = py(u,v) and t = t(u,v) =
Pw(u,v), P(u,v) is made into the faithful parameterization

P(s,t) = (—gs - gt, s, t)

of the same line az + by + cw = 0, i.e. P(s(u,v),t(u,v)) = P(u,v). Clearly, p,(u,v)
and p,, (u,v) do not share a common factor; for otherwise, due to Equation(26), the
three components of P(u,v) would have a common factor, which is a contradiction.
Thus s = s(u,v) and ¢t = t(u,v) define a quadratic reparameterization, which is
2-to-1. Hence, P(u,v) is unfaithful. O

With these general results in hand, we are now ready to turn our attention to
degeneracies of specific types of conic sections. We begin with the following lemmas.

Lemma 4. Suppose that det(N,,) # 0. Let -y, and v, be as defined in Theorems 1
and 2. Then

Yz = Res(y,v) {P2(u, v), pw(u, v)}/detQ(Nw),

Yy = Res, ) {py (¢, v), pu(u, v)}/det?(Ny).

Proof. Since p;(u,v), py(u,v), p.(u,v) are quadratic polynomials,

ez 2fz gz O

0 er 2f: 9z
Res(u,v){pa:(u,v),pw(uav)}: ew Q;w _l]'; 01’

0 ey 2fw Juw

ey 2fy gy O

0 ey 2fy g

Res(u,u) {Py (4, 0), pu(w,0)} = | 2;", gwy 0
w

0 ew 2fuw guw
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Now the lemma follows from straightforward verification. m|
Lemma 5. Let P(u,v) be in the form of Equation (1). Suppose that det(N,,) # 0.
Then the three components of P(u,v) share a common factor if and only if v, =

Yy = Tay = 0, where vz, vy, and T,y are as defined in Theorems 1 and 2.

Proof. By Lemma 4,

ez 2fz gz O ey 2fy gy O
0 ex 2fz gz 2 0 e 2fy g 2
= det v Y IY | = det*(N, .
ew2fw gw O ¢ (Nw)'}’z: and ew2fw gw O € ( w)'Yy
0 ew 2fuw guw 0 ew 2fy guw
Moreover, it is also straightforward to verify that
ez 2fz gz O €y 2fy 9y 0
0 ey 2fy Gy 0 er 2fz 9z 2
= 2det*(Ny)Tey. 27
ew 2fw gw 0O ew 2fuw Guw O (Nw)7ay (27)
0 ew 2fuw guw 0 ew 2fuw gu
Thus
Res(u,v) {px(U, ’l)) +py(u>v)7 Pw('U', ’U)}
€z + €y 2fx+2fy gz + gy 0
_ 0 ex +ey 2fa:+2fy Gz + Gy
€w 2fu Juw 0
0 Ew 2_fw Jw
ez 2fz gz O €y 2fy 9y 0
_ 0 e; 2fz 9= + 0 €y 2fy 9y
ew 2fw gw 0O ew 2fw gw O
0 ey 2fu guw 0 ey 2fuw Guw
er 2f¢ gz O ey 2fy g O
n 0 e 2fy gy + 0 e 2fs 92
ew2fw gw O ew2fw gw O
0 ew 2fw gu 0 ew 2fw Gu
= det2(Nw)(’Yx + Yy + 27ay)- (28)

Now suppose that vy = v, = 7y = 0. Since, by Lemma 4,

Resy,v) {Pz (1, v), pu(u,v)} = det2(Nw)'ym =0,

pz(u,v) and py(u, v) share a common factor g (u, v). Similarly, py(u, v) and py, (u, v)
share a common factor ga(u,v). If either ¢;(u,v) or ¢2(u,v) is quadratic, then ob-
viously pz(u,v), py(u,v), and p,(u,v) share a common factor. If both g;(u, v) and
g2(u, v) are linear and equal up to a constant multiple, then again p,(u,v), p,(u,v),
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and p,, (u,v) share a common factor. Now suppose that ¢; (u, v) and g2(u, v) are lin-
ear and not scalar multiples of each other. In this case g1(u,v) and g2(u,v) must
be the two linear factors of p,,(u, v).

Moreover, since v, = vy = Tzy = 0, by Equation (28), p;(u,v) + py(u,v) and
Pw(u,v) have at least one common linear factor, which, without loss of generality,
can be assumed to be g;(u,v). But then g¢;(u,v) is also a factor of py(u,v), since
Py(u,v) = (pz(u,v) + py(u,v)) — pz(u,v). Hence, g1(u,v) is a common factor of
Pz(u,v), py(u,v), and py,(u,v).

Conversely, suppose pz(, v), py(u, v), and py,(

u,v
0 = Res(y,v) {Pz(u, v), pw(u,v)} = det?(Ny )Yz,
0 = Resuo){py (1, v), Pu(t, )} = det® (N ),
0 = Res(y ) {Pz (1, v) + py(u,v), pu(u,v)} = detz(Nw)(’)’a: + Yy + 27ay).
Hence, v, = vy = T2y =0, since det(N,,) # 0. O

) share a common factor. Then

Lemma 6. Let P(u,v) be in the form of Equation (1). If det(Ny,) > 0, then
Pw(u,v) has no real linear factor.

Proof. This result is obvious, since det(N,,) = —A/4, where A = 4f2 — 4e,,g,,
is the discriminant of p,(u,v). O

Theorem 5. (The elliptic case - I) Let P(u,v) be in the form of Equation (1).
Suppose that det(N,,) > 0. Then the following conditions are equivalent:

a. P(u,v) represents a point.
b. rank(M) =1.
C. Yz ="y =0.

Proof. The equivalence of (a) and (b) follows from Theorem 4. Therefore, we
just need to prove the equivalence of () and (c¢).

Suppose that rank(M) = 1. Then the three components of P(u,v) are scalar
multiples of each other. It follows, by Lemma 4, that v, =, = 0.

Conversely, suppose v, = 7y = 0. Then, by Lemma 4, p,(u, v) and p,(u, v) share
a common factor, and py(u,v) and p,,(u,v) share a common factor. Therefore, by
Lemma 6, p;(u,v) and py,(u,v) are scalar multiples of each other, and p, (v, v) and
Pw(u,v) are scalar multiples of each other. Thus the three components of P(u,v)
are scalar multiples of each other. Hence, rank(M) = 1. m|

Theorem 6. (The elliptic case - II) Let P(u,v) be in the form of Equation (1).
Suppose that det(Ny,) > 0. Then the following conditions are equivalent:

a. P(u,v) represents a line.
b. rank(M) = 2.
c. det(M) =0 and v2 +~2 #0.
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d. P(u,v) is not a faithful parameterization.

Proof.

(a) — (b): Follows by Theorem 4.

(b) — (c): First, we have det(M) = 0, since rank(M) = 2. Moreover, since
rank(M) # 1, the three components of P(u,v) are not scalar multiples of each
other. Without loss of generality, assume that p,(u,v) and p,,(u,v) are not scalar
multiples of each other. It follows by Lemma 6 that p,(u,v) and py(u,v) do not
have a common factor. Therefore, by Lemma 4, v, # 0. Hence, 72 + ’73 # 0.

(¢) — (d): Since 42 +~2 # 0, by Lemma 4, the three components of P(u,v) do
not share a common factor. Thus, by Theorem 5, we have rank(M) > 1. On the
other hand, since det(M) = 0, we have rank(M) < 3. Therefore rank(M) = 2, so,
by Theorem 4, P(u,v) represents a line. Hence, by Lemma 3, P(u,v) is unfaithful.

(d) — (a): Follows by Lemma 3. O

Note that in the elliptic case (i.e. det(NN,,) > 0), the three components of P(u,v)
cannot share a common real linear factor. That is, in the elliptic case, this degen-
erate case does not occur.

If either 7, or -y, but not both are zero, then P(u,v) represents a line since, by
Lemma 6, either p;(u,v) or py(u,v) is a scalar multiple of py,(u, v). In fact, in this
case the line is in a special position: either vertical (when 4, = 0) or horizontal
(when v, = 0). Note too that in this case, since the three components of P(u,v)
do not have a common factor, by Lemma 3, P(u,v) is necessarily unfaithful.

Theorem 7. (The hyperbolic case - I) Let P(u,v) be in the form of Equation (1).
Suppose that det(N,,) < 0, i.e. the hyperbolic case. Let Yz, Yy, Toy and Oy be defined
as in Theorem 2. Then the following conditions are equivalent:

a. The three components of P(u,v) share a common factor.
b. Yz =1y = det(M) =0.

Co Yo ="y =Tey=0.

d. 67y =0.

In this case P(u,v) represents a line if rank(M) = 2, and P(u,v) represents a
single point if rank(M) = 1.

Proof. The equivalence of (@) and (¢) is proved in Lemma 5. We next show the
equivalence of (a) and (b), and then the equivalence of (¢) and (d).

(@) — (b): This result follows from Lemma 4 and Theorem 4.

(b) — (a): Since v, = vy =0, it follows by Lemma 4 that p;(u,v) and py(u,v)
share a common factor, and py(u, v) and p,,(u, v) share a common factor. Moreover,
since det(M) = 0, the three components of P(u,v) are linearly dependent — that is,

apz(u,v) + bpy(u, v) + cpw(u,v) =0,
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where a, b, ¢ are not all zero. Furthermore, it is evident that @ and b are not both
zero; for otherwise, since ¢ # 0, we would have p,,(u, v) = 0, which is a contradiction.
Thus, without loss of generality, we can assume that a # 0. Then from

b c
pz(u7 U) = —apy(U,U) - Epw(U, 'U)’

it follows that the common factor of p, (u, v) and p,, (u, v) is also a factor of p,(u, v).
Hence, the three components of P(u,v) share a common factor.
(¢) = (d): This result follows because by definition (see Theorem 2)

bay = /(e — W) + 472, (20)

(d) — (c): Suppose that 65, = 0. Then from Equation (29), we obtain v, —v, =0
and 7,y = 0. Moreover, when 6, = 0, we have v, + v, = 2¢3 > 0 from (14), and
Yz +vy = =202 < 0 from (15). Thus v, +y, = 0. It follows that v, = v, = 74y = 0.

Finally, the last statement of the theorem follows from Theorem 4. [

Theorem 8. (The hyperbolic case - II) Let P(u,v) be in the form of Equation (1).
Suppose that det(N,,) < 0. Then the following conditions are equivalent:

a. P(u,v) is not a faithful parameterization.
b. det(M) =0 and v2 +~2 # 0.
c. det(M) =0 and d,y # 0.

Proof. We are going to show separately the equivalence of (a) and (b) and the
equivalence of (a) and (c).

(a) — (b): Suppose that P(u,v) is not a faithful parameterization. Then by
Theorem 4 we have det(M) = 0. If 42 + 42 = 0, i.e. 7; = 7 = 0, then by
Theorem 7 the three components of P(u,v) have a common factor; however, this
is a contradiction, since by Lemma 3, in an unfaithful parameterization, the three
components of P(u,v) do not have a common factor. Hence, y2 4+ 72 # 0.

(b) — (a): Since det(M) = 0, by Theorem 4, P(u,v) represents either a single
point or a line. Since 42+ 2 # 0, by Lemma 5, the three components of P(u, v) do
not have a common factor. Therefore, P(u,v) represents a line, not a single point,
and by Lemma 3, P(u,v) is unfaithful.

(@) — (¢): Suppose that P(u,v) is not a faithful parameterization. First, by
Theorem 4, we have det(M) = 0. Furthermore, by Lemma 3, the three components
of P(u,v) do not have a common factor. But if d;, = 0, then by Theorem 7 the
three components of P(u,v) share a common factor. This is a contradiction. Hence,
bay 0.

(¢} — (a): Suppose that det(M) = 0 and 6., # 0. Since det(M) = 0, by Theo-
rem 4, P(u,v) is either unfaithful or its three components share at least one common
factor. But in the latter case, by Theorem 7, §;, = 0. This is a contradiction. Hence,
P(u,v) is unfaithful. m|
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Remark: Note that det(M) = 0 and 7,y # 0 is a sufficient condition for P(u,v)
to be unfaithful, but not a necessary one. To see the sufficiency, we suppose that
det(M) = 0 and 7y # 0. Then, by Theorem 4, P(u,v) is degenerate. Moreover, it is
evident that P(u,v) is unfaithful; otherwise, the three components of P(u, v) would
share a common factor, which by Lemma 5 contradicts the fact that 7., # 0. To
see that this condition is not a necessary one for P(u, v) to be unfaithful, consider
the parameterization P(u,v) = (u? — v2,v%,u? — v2). Clearly, det(N,,) < 0. Since
P(u, v) represents the line  —w = 0 and the three components of P(u,v) share no
common factor, by Lemma 3, P(u,v) is unfaithful. However, using Equation (27),
it is easy to verify that det(/Ny)7zy = 0. Hence, 75y = 0, since det(N,) < 0.

For the parabolic case, i.e. when det(N,) = 0, define

L? = tr*(N.N}2) + tr? (N, N2).
Then we have the following results.

Lemma 7. Let P(u,v) be in the form of Equation (1). Suppose that det(N,) = 0.
Then the three components of P(u,v) share a common factor if and only if L?> = 0.
Proof. Since det(N,,) =0,
P (u,v) = epu? + 2fuv + guv? = wo(vou — ugv)?
for some real numbers wo # 0, and vy, up with u2 + v # 0. Thus
ew = WoU2, fu = —Woloo, Guw = WoUZ.

The resultant of p,(u,v) = ezu? + 2fyuv + gzv? and £, (u,v) = vou — ugv is

€z 2f1' gz
Res(uyv) {pI(U,U),Ew(u,’U)} = [vg —Ug 0
0 Vg —Ug

1
= e,ud + g:v¢ + 2fsovo = %(ezgw + €wdz — 2fz fw)
1 *
= EStI‘(Nwa).
Similarly,
1 .
Res(y,v) {Py (1, ), oy (u,v)} = w—otr(NyNw).

Thus p;(u,v) and py(u,v) share the common factor vou — uov with py,(u,v) if and
only if tr(N;N}) = 0 and tr(N,Nz) =0, i.e. if and only if LZ =0. O

Theorem 9. (The parabolic case - I) Let P(u,v) be in the form of Equation (1).
Suppose that det(N,,) = 0. Then the following conditions are equivalent:

a. The three components of P(u,v) are scalar multiples of each other, i.e.
P(u,v) represents a single point.
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b. rank(M) =1.
c. L? = det(N,) = det(N,) = 0.

Proof.

(@) — (b): This result follows from Theorem 4.

(b) — (c): Since rank(M) = 1, the three components of P(u,v) are scalar
multiples of each other; therefore, both p,(u,v) and py(u,v) are perfect squares,
since py(u,v) is a perfect square. Thus det(N,) = det(N,) = 0. Furthermore, it
follows from Lemma 7 that L? = 0.

(¢) — (a): Since det(N,) = det(V,) = 0, both p,(u,v) and py(u,v) are perfect
squares. Since L? = 0, by Lemma 7, the three components of P(u,v) share a
common factor. It follows that the three components of P(u,v) are scalar multiples
of each other. Hence, P(u,v) represents a point. O

Theorem 10. (The parabolic case - II) Let P(u,v) be in the form of Equation (1).
Suppose that det(N,,) = 0. Then the following conditions are equivalent:

a. The three components of P(u,v) share exactly one linear factor.
b. L? =0 and det®(N,) + det?(V,) # 0.
c. L2 =0 and rank(M) = 2.

Proof.

(a) — (b): Suppose that the three components of P(u, v) share exactly one linear
factor. Then L% = 0, by Lemma 7. Since P(u,v) does not represent a single point,
by Theorem 9, det*(N,) + det*(N,) # 0.

(b) = (¢): Since L? = 0, by Lemma 7, P(u, v) is degenerate. Thus, by Theorem 4,
det(M) =0, i.e. rank(M) < 3. On the other hand, since det?(N,) + det?(N,) # 0,
by Theorem 9, rank(M) # 1. Since rank(M) > 0 by assumption, it follows that
rank(M) = 2.

(¢) — (a): Since rank(M) = 2, by Theorem 4, P(u,v) represents a line. Since
L? =0, by Lemma 7, the three components of P(u,v) share a common factor; but,
by Theorem 9, this common factor cannot be quadratic, since rank(M) # 1. Hence,
the three components of P(u,v) share exactly one linear factor. O

Theorem 11. (The parabolic case - III) Let P(u,v) be in the form of Equation
(1). Suppose that det(N,,) = 0. Then the following conditions are equivalent:

a. P(u,v) is not a faithful parameterization.
b. det(M) =0 and L? # 0.

Proof.

(a) — (b): Suppose that P(u,v) is unfaithful. Then by Lemma 3 the three
components of P(u,v) do not have a common factor. Thus, by Lemma 7, L2 #£0.
Moreover, by Theorem 4, det(M) = 0.
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(b) — (a): Since det(M) = 0, by Theorem 4, P(u,v) is degenerate. However,
since L? # 0, by Lemma 7, the three components of P(u,v) do not have a common
factor. It follows, by Theorem 4 again, that P(u,v) = 0 represents a line, and, by
Lemma 3, that P(u,v) is not a faithful parameterization. O

7. Rational Quadratic Bézier Curves
In some applications a conic section may appear in rational quadratic Bézier form
P(t) = (1 —t)*Py +2t(1 — t) P, + £*P,,

with homogeneous control points P; = (z;,¥;,w;), ¢ = 0,1,2. Through the repa-
rameterization s = (1 — t)/t, the same curve can be rewritten in the form

P(s) = s?Py 4+ 2sP, + P,.

Thus one just needs to put £ = Py, I = P, and G = P,, in order to apply the
formulas in the results in the preceding sections, without having to convert from
the Bézier form to the power form.

A conic section in rational Bézier form is completely characterized by its affine
control points @; and its scalar weights w;, j = 0,1, 2. Thus the geometric charac-
teristics of such conics are functions of these six parameters. For example, it follows
easily from Theorems 1, 2 and discussion in the previous paragraph that the center
C of an ellipse or hyperbola is given by

wowa Q2 — 2wiQ1 + wowaQo

C= 2(wowe — wi)

Similarly the unit direction vector D of the symmetry axis of a parabola is parallel
to the vector

D* = wow2 Q2 — 2wiQ1 + wow2Qo.

But for a parabola, det(N,,) = wows —w? = 0, so wows = w?. Hence, D is actually
parallel to Q2 — 2Q; + Qo.

Simple closed formulas for other geometric features of conic sections in rational
Bézier form are not so easy to derive since, for example, the formulas in Theorems
1, 2 for the semi-major and semi-minor axis vectors are in terms of polar, rather
than rectangular, coordinates. Finding simple closed formulas for these geometric
characteristics in terms of Bézier control points and weights is still an open problem.

8. Conclusions

We have presented an algebraic approach based on invariants to computing the
geometric characteristics of conic sections directly from their rational quadratic pa-
rameterizations. In contrast with existing algorithmic solutions, our treatment is
elementary and yields simple explicit formulas for all the geometric characteristics
of any conic in terms of these invariants. The algebraic derivations of these invariant



Geometric Characteristics of Conic Sections 187

characterizations take several pages, but the formulas themselves are concise, simple
to summarize (Theorems 1-3), and easy to program. These algebraic invariants also
have clear geometric meanings, and are used here as well to give a complete char-
acterization of different degenerate rational quadratic parameterizations of conic
sections, which is another contribution of this paper.

When using our results to compute the geometric characteristics of a conic
section from one of its quadratic parameterizations P(u, v), one first needs to check
det(M) (Theorem 4). If det(M) # 0, the conic is proper. Then the type of the conic
can be determined by testing the sign of det(N,,) (Lemma 2). For the three cases
where the conic is an ellipse, a hyperbola, or a parabola, its geometric characteristics
can be computed using the closed formulas provided in Theorem 1, Theorem 2, or
Theorem 3. If det(M) = 0, the conic is degenerate, and reduces to a line or a point.
In this case, one may further distinguish between the different degenerate cases by
applying the results in Section 6.
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